

FOREWORD

As a development finance institution, IFC is committed to climate action and the sustainable development of critical minerals in emerging markets. We support our clients in their decarbonization journeys by catalyzing investment in low-carbon technologies, using green and sustainability-linked financing, mobilizing private capital, and co-sponsoring research, as well as by working in partnership with the public and private sector.

To meet the Paris Agreement's goal of limiting global warming to 1.5°C, the world needs to rapidly transition towards a low-carbon economy. This transition is reliant on mining minerals and metals such as copper and nickel, which are critical inputs to clean energy technologies, from electric vehicles to renewable energy sources like wind and solar and for energy transmission and storage.

Nickel and copper are among at least 17 minerals and metals requiring significantly expanded production to meet net zero emissions goals by 2050. And herein lies the challenge: There are significant greenhouse gas (GHG) emissions associated with mining these critical minerals today. To achieve net zero on a global basis by 2050 or sooner, the mining sector must find ways to meet the exponentially growing demand for these critical minerals while operating on a net zero basis itself.

To this end, the industry's net zero commitments must: include credible, science-based plans, with interim targets on scope 1, 2, and material scope 3 GHG emissions; lay out technological deployment pathways and associated resourcing; support positive social and environmental outcomes; build community and supply chain resilience; ensure a just transition; and be intentional about collaboration. Scaling the existing and emerging technology solutions at the necessary rate will require extensive collaboration across the mineral value chain. Positive examples of such collaboration with upstream and downstream suppliers and customers are described in this roadmap.

On behalf of the World Bank Group's Climate Smart Mining (CSM) initiative, I am pleased to bring you IFC's net zero roadmap for copper and nickel value chains. This document was developed in partnership with the Carbon Trust, Rocky Mountain Institute (RMI), the Colorado School of Mines, and the Columbia Center on Sustainable Investment at Columbia University. We hope that this resource will support mining companies in building their decarbonization action plans and encourage continued collaboration among industry players, policymakers, communities and sustainable finance investors to ensure the metals and minerals for green technologies are supplied in a resilient, equitable, and sustainable manner.

Namrata Thapar IFC Global Mining Manager

Veronica Nyhan Jones IFC Sustainable Infrastructure Advisory Manager

ACKNOWLEDGEMENTS

The **Net Zero Roadmap for Copper and Nickel Mining** was prepared by International Finance Corporation (IFC) as part of the World Bank Group's Climate Smart Mining Initiative.

We thank the project's steering committee and technical working group members for their input, diligent reviews, and support spanning the 12 months of development, and the many subject experts that were interviewed and assisted with peer reviews. These contributors are listed at the back of this report.

The roadmap was coordinated by IFC (Arjun Bhalla, Krishna Matturi, Ross Hamilton). The analysis and development of the roadmap were undertaken by the Carbon Trust (Paul Huggins, Christelle van Vuuren, Renata Lawton-Misra, Reinhardt Arp, Juliana Meng, Tim Mew, Zaira Renteria), RMI (Paolo Natali, Lachlan Wright, Alastaire Dick, Sravan Chalasani, Valentina Guido), The Payne Institute for Public Policy at the Colorado School of Mines (Jordy Lee), and Columbia Center on Sustainable Investment (Perrine Toledano, Martin Dietrich Brauch, Jack Arnold, Bryan Sherill, and Sarah Ahmad).

Sponsored by

Prepared by

Delivered by

Further information and references supporting this Roadmap can be found in the **Net Zero Roadmap for Copper and Nickel Technical Report.**

ACRONYMS & ABBREVIATIONS

BAU Business-as-usual

BVCM Beyond Value Chain Mitigation

CO₂**e** Carbon dioxide equivalent

CSM Climate Smart Mining Initiative

CSP Concentrated Solar Power

ETMs Energy transition metals

ICE Internal Combustion Engine

ICMM International Council on Mining and Metals

IFC International Finance Corporation

IPPs Independent Power Producers

MtCO₂e Metric tons of carbon dioxide equivalent

MVR Mechanical Vapor Compression

NDCs Nationally Determined Contributions

NZCB Net Zero carbon budget

RD&D Research Design and Development

RE Renewable Energy

PPAs Power Purchasing Agreements

WACC Weighted Average Cost of Capital

EXECUTIVE SUMMARY

The net zero roadmap for copper and nickel mining value chains is a solutions guide aimed at decarbonizing the mining of critical minerals. The roadmap addresses the greenhouse gas emissions (GHG) from mining and processing operations, outlining tangible decarbonization actions the industry can take to cut emissions by 90 percent and reach net-zero emissions goals by 2050. It offers a range of solutions, including renewable and low-carbon technologies, energy efficiency, and digitization. Designed to encourage crossindustry collaboration among mining value-chain companies, policymakers, and sustainable finance investors, the roadmap identifies ways to capture potential environmental and social benefits and highlights opportunities to invest in technology innovation. Copper and nickel mining value chains were used as test cases to explore the challenges and opportunities that will occur between now and 2050 as the global energy transition accelerates. The roadmap learnings are adaptable to other metals needed ensure a successful global energy transition.

Key Takeaways for CEOs

- Demand for Energy Transition Metals (ETMs) doubles GHG emissions: to reach net zero, ETM emissions will need to reduce by 90%.
- Technological solutions are already or soon will be available: Three waves of technology deployment: (i) Renewable energy, site operational energy efficiency improvements, and process optimization; (ii) zero-emissions haulage trucks; (iii) process heat electrification and green hydrogen.
- Material ESG risks associated with rising ETM demand: For example, many copper and nickel reserves are located in high water risk and high biodiversity areas respectively, necessitating proactive and responsible management.
- Just Transition: mining companies, governments and other actors have an
 important role in enabling communities to reimagine their future at the center of a
 new climate economy and in the process build community resilience.
- Collaboration is key to achieving net zero: Mining companies and value chain actors
 must work together to accelerate the development, deployment and co-investment in
 the technological innovations required for the mine of the future, and to develop net
 zero industry standards, regulations, and frameworks.

TABLE OF CONTENTS

01	Energy-Transition Metals: Keys to Low-Carbon Future	<u>8</u>
02	Why Copper and Nickel: Pathway to Net Zero Future	<u>11</u>
03	The Copper Value Chain: Net Zero Challenges	<u>15</u>
04	The Nickel Value Chain: Net Zero Challenges	22
05	Addressing the Challenges: Transition to Net Zero Mines	29
	Investing in Decarbonization	39
07	Opportunities for Environmental and Social Co-Benefits	42
08	Call-to-Action for Mining Companies	47

- Achieving net zero by 2050 requires deep decarbonization of the global energy sector.
- Transition towards renewable energy sources and low-carbon technologies (e.g., solar) is underway and will become the norm.
- Energy transition technologies are mineral intensive.
- Rapid energy technology change to decarbonize is inevitable, cost effective, and beneficial.
 - Technology interventions are already or will be available within the next 10 years.
 - Decarbonization of the mining sector should be **inclusive and just** to support regional resilience.
- Sustainable finance mechanisms support responsible climate action and risk mitigation while providing favorable rates.
- Policy, legal, and regulatory barriers can be addressed through engagement with governments.
- The roadmaps for copper and nickel aim to give mining companies a framework to decarbonize their value chains and plan for climate action.

ENERGY-TRANSITION TECHNOLOGIES ARE MINERAL-INTENSIVE

17 minerals and metals will require significantly expanded production to meet global net zero emissions goals by 2050.

But without massive, transformative change, GHG emissions from scaled-up production will increase exponentially.

Mining value chains will need to reduce absolute emissions by ~90% from 2020 levels, and remove remaining emissions, to achieve *net zero* by 2050.

Sources: Azadi, M., Northey, A., Ali, S.H. and M. Edraki, Transparency on greenhouse gas emissions from mining to enable climate change mitigation, 2020, Nature Geoscience, Vol 13, 100-104; IEA (2021), The Role of Critical Minerals in Clean Energy Transitions. IEA. Paris https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions. License: CC BY 4.0

Mineral and metal production across all market segments is responsible for

~10% OF GLOBAL GHG EMISSIONS

All mining emissions today are equivalent to the global 2050 net zero carbon budget (NZCB)

Without ambitious action by 2030 the 1.5°C carbon budget will be exhausted

Some countries and customers are acting quickly to secure longterm supply of ETMs (e.g., ICE phase out, RE scale up)

Achieving mining's NZCB of 0.5 GtCO2e will require dramatic transformation of energy use, equipment, processes, transport, and materials

Sources: Azadi, M., Northey, A., Ali, S.H. and M. Edraki, Transparency on greenhouse gas emissions from mining to enable climate change mitigation, 2020, Nature Geoscience, Vol 13, 100-104; Carbon Trust analysis, +Trends in global CO₂ and total greenhouse gas emissions: 2021 report. Netherlands Environmental Assessment Agency. * Average annual emissions growth excluding LULUCF. NDCs – Nationally Determined Contributions.

The Copper and Nickel Roadmap

PAVES THE WAY

for other ETMs and sector transitions for a low-carbon future

Nickel and copper production must be sustainable; 90% reduction in today's GHG emissions level is needed

Potential for long-lasting societal benefits and a priority for limiting negative environmental effects

THE NET ZERO ROADMAP

guides a just transition to rapid, responsible, & scaled-up nickel and copper production

Industry-Led

NET ZERO ROADMAP EMISSIONS SCOPE

includes majority of key emissions sources for metal production

Cradle-to-gate boundary-corresponding to typical mining company's emissions scopes-includes all emissions from fuel, electricity, and purchased goods

company sells intermediate products e.g., concentrate

By 2050 copper supply needs to match

230%+ INCREASE IN DEMAND

Global Copper Demand (Mt/y)

Global Copper Supply (Mt/y)

Without decarbonization, GHG emissions from copper production

WILL MORE THAN DOUBLE BY 2050

1 year delay in decarbonizing ≡ ~10% year-on-year deviation away from Net Zero, requiring larger capital allocation later

Copper production emissions are

PRIMARILY CAUSED BY ENERGY USE

Note: excludes transportation emissions

18

As copper mining expands, emissions from land-use change WILL RISE THREEFOLD

Land-Use Change GHG Emissions from Increased Copper Mining

Source: Carbon Trust analysis based on Murguia, D. 2015. Global Area Disturbed and Pressures on Biodiversity by Large-Scale Metal Mining. Kassel University Press. http://www.uni-kassel.de/upress/online/OpenAccess/978-3-7376-0040-8-DopenAccess.pdf. Watsukli, Y., Nakajima, K., Yamano, H., Otsuki, A. and Murakami, S. 2018. Variation and changes in land-use behind nickel mining: Coupling operational and satellite data. Resources, Conservation and Recycling, 134: 361-366. Nakajima K., Nansai K., Matsubae K., Tomita M., Takayanagi W. and Nagasaka T. 2017. Global land-use change hidden behind nickel consumption. Science of the Total Environment, 586: 730-737. IPCC. 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4, Agriculture, Forestry and Other Land

ANNUAL EMISSIONS

(2020) 0.3 MtCO₂e

2030 0.6 MtCO₂e

2050) 1.1 MtCO₂e

Cumulative emissions 2020–2050 \sim 22.7 MtCO₂e

BAU emissions source

New mines

Existing mines

TO ACHIEVE NET ZERO

we must reduce GHG emissions from copper production by >90% from today's levels

Net Zero Global Primary Copper Production Emissions (MtCO₂e/y)

Doubling copper supply will significantly

INCREASE COMPETITION FOR WATER

33%

of copper reserves are in **high water-risk** countries

SOLUTION**

Adopt a water stewardship approach to address water challenges and build trust**

Copper reserves

Relative share of global copper reserves

**For practical guidance: IFC Performance Standards and ICMM Environmental Resilience

Source: Carbon Trust analysis based on WWF Water Risk Filter 2021: https://waterriskfilter.org/explore/map., USGS. 2021. U.S. Geological Survey, Mineral Commodity Summaries: Copper. https://pubs.usgs.gov/periodicals/mcs2021/mcs2021-copper.pdf.

^{*}Water Risk is based on "<u>water scarcity</u>," which refers to the physical abundance or lack of freshwater resources, which significantly impact husiness

NICKEL DEMAND WILL TRIPLE BY 2050

recycled sources become the dominant supply route

Without decarbonization, GHG emissions from nickel production

WILL NEARLY DOUBLE BY 2050

1 year delay ≡ ~10% year-on-year deviation away from Net Zero outcome requiring larger capital allocation later

Most nickel production emissions

ARE CAUSED BY ENERGY USE INCLUDING HEAT

As nickel mining increases, emissions from land-use change **WILL RISE FIVEFOLD**

Land-Use Change GHG Emissions From Increased Nickel Mining

Source: Carbon Trust analysis based on Murguia, D. 2015. Global Area Disturbed and Pressures on Biodiversity by Large-Scale Metal Mining. Kassel University Press. http://www.uni-kassel.de/upress/online/OpenAccess/978-3-7376-0040-8.OpenAccess.pdf. lwatsuki, Y., Nakajima, K., Yamano, H., Otsuki, A. and Murakami, S. 2018. Variation and changes in land-use intensities behind nickel mining: Coupling operational and satellite data. Resources, Conservation and Recycling, 134: 361-366. Nakajima K., Nansai K., Matsubae K., Tomita M., Takayanagi W. and Nagasaka T. 2017. Global land-use change hidden behind nickel consumption. Science of the Total Environment, 586: 730-737. IPCC. 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, vol. 4, Agriculture, Forestry and Other Land Uses https://www.biocc.pungin.ipass.org/in/public/2019/ft/vol4.html

ANNUAL EMISSIONS

2020) 0.15 MtCO₂e

2030) 0.45 MtCO₂e

 $(2050) 0.65 \text{ MtCO}_2 \text{ e}$

Cumulative emissions 2020–2050 $\sim 15 \text{ MtCO}_2 e$

TO ACHIEVE NET ZERO,

we must reduce GHG emissions from nickel production by >90% from today's levels

BAU emissions source New mines Existing mines

Net Zero Global Primary Nickel Production Emissions (MtCO₂e/y)

Tripling nickel supply will require

PROACTIVE MITIGATION OF BIODIVERSITY RISK

75%

of nickel reserves are in **high biodiversity** countries

SOLUTION*

The mitigation hierarchy presents a best practice approach for addressing biodiversity impacts.

Nickel reserves

Relative share of global nickel reserves

Biodiversity Index is based on species richness adjusted to country area (Source: <u>Convention on Biological Diversity</u>)
*For practical quidance: IFC Performance Standard 6 and ICMM Mitigation Hierarchy

Source: Carbon Trust analysis based on: Convention on Biological Diversity, Annex 1: Biodiversity Information by country, <u>https://www.cbd.int/gbo1/annex.shtml#note1</u>; USGS. 2021. U.S. Geological Survey, Mineral Commodity Summaries: Nickel. https://oubs.usgs.gov/periodicals/mcs2021/mcs2021-nickel.pdf.

A NET ZERO TRANSITION

Mine of the Future

Green Hydrogen

Green hydrogen based fuelcell vehicles are currently being piloted for large haul truck applications. May also find applications in chemical reduction or high temperature processes which are difficult to electrify.

Conveyers and Trolley Assist

Mature technologies available today although cannot eliminate haulage emissions. Sites should consider maximising use of these technologies in the short-term and support future electrification (e.g., use of trolley-assist for in-haul charging).

Battery-Electric Vehicles

BEVs are already available for underground applications where the elimination of tailpipe emissions also reduces ventilation costs. Larger sizes for open pit applications are under development.

Energy Storage

Energy storage when combined with renewable energy (RE) enables elimination of electricity based emissions. Battery price declines continue to improve cost competitiveness, mines should also consider unique options such as compressed all storage.

-

Process Optimization

Includes both mature (e.g., mine-to-mill) and emerging (e.g., ore sorting) technologies which can reduce energy use and help alleviate the decliming ore grade challenge. As with efficiency upgrades these investments also lower future RE costs.

Efficient Equipment

Including both mature hardware upgrades (e.g., best-in-class electric motors) and newer digital technologies (e.g., haul truck automation to reduce fuel use). Efficiency measures both reduce emissions today and lower costs for future RE deployments.

Inclusivity and Just Transition

Net zero mines are socially responsible and inclusive. They contribute to local economic development, community resilience and a healthy environment that enables additional, net-positive outcomes for local livelihoods, human well-being, health, autonomy and resilience.

onsite mini-grid.

Carbon Removal Offsets

To reach net zero emissions by 2050, mines will have to use carbon removal offsets to mitigate any residual, hard-to-abate emissions (10% of 2020 levels). Carbon removal offsets should be deployed in-line with the mitigation hierarchy.

Key attributes of a sustainable Net Zero mine

- Monitors, measures and reports its Scope
 1, 2 and 3 emissions
- Has developed a Net Zero strategy that has interim targets and is appropriately resourced
- Implements technologies to reduce "90% of current emissions
- Has an effective residual emissions management plan
- Avoids and minimizes adverse land-use change, biodiversity impacts, social impacts, and other ESG risks
- Ensures good governance that enables a just transition
- 7. Collaborates with local and global stakeholders to realize a 1.5°C world
- Ensures a planned closure of the mine when exhausted, creating shared value with the community in the future

Technology interventions are already available or will be

WITHIN THE NEXT 10 YEARS

Technology ready | cost competitive

nearing competitiveness

Technology requires innovation | no current cost competitive

Technology close to market | costs

Some technologies ready, others close to market I some cost competitive or nearing competitive

	Technology Readiness	Cost	Available at Scale	Emissions Abatement Potential*	Notes
Efficient Equipment			Now	5-10%	Best-in-class motors, variable speed drives
Process Optimization			<5 years	10-20%	Mine-to-mill, high-intensity selective blasting, coarse ore flotation & ore sorting
Digitization & Automation			<5 years	5-10%	Haul truck automation to reduce fuel use
Renewable Energy			Now	70-100%	On-site RE hybridized with diesel can provide 70% emissions reduction
Energy Storage			<5 years	100%	Enables complete RE penetration. Mines have unique storage options (compressed/liquid air)
Sustainable Biofuels			Now	30-70%	Even without blending ~30% of emissions remain, typical 20%–30% premium
Green Hydrogen			5-10 years	100%	Used in large haul truck or for high temperature heat. May have indirect global warming impacts
Battery-Electric Vehicles			Underground: Now Open Pit: 5–10 years	100%	BEVs already used at underground mines. Larger BEVs for open pit mines in development.
Conveyors & Trolley Assist			Now	30%	Mature, cost-competitive haulage electrification.

RENEWABLE ENERGY COST DECLINES

Cost competitive with fossil alternatives

EXAMPLES

Power Purchase Agreement

BHP signed RE PPAs for 6 TWh/y of electricity in 2021 for its Chilean copper operations, cancelling its previous coalbased PPAs.

Onsite Generation

Rio Tinto is installing a 34 MW solar facility at its new Gudai-Darri facility which will provide 65% of the mine's average electricity demand.

Source: BNEF: Lazard

BATTERY & ELECTROLYZER COST DECLINES

Cost competitive haulage electrification before 2030

EXAMPLES & INITIATIVES

Hydrogen Truck

Anglo American is testing a 2MW hydrogen-battery hybrid truck at its Mogalakwena mine in South Africa.

Battery Electric Truck

Glencore's Onaping Depth mine is planning to use an all-electric underground fleet providing savings of 44% and 30% on mine ventilation and cooling.

Innovation Challenge

The Charge On Innovation Challenge brings together mining companies and equipment providers to develop solutions for in-haul fast charging to further drive down costs.

HEAT COST DECLINES WITH ELECTRICITY PRICE

High efficiency will be key to enable cost competitive electric heat

EXAMPLES

MVR

Alcoa is testing MVR at its Wagerup plant in Western Australia, which could reduce alumina refinery emissions by 70%.

Green Hydrogen

Aurubis is testing the use of green hydrogen to replace natural gas in anode furnaces at its copper smelter in Hamburg.

Source: Silvia Madeddu et al 2020 Environ. Res. Lett. 15 124004.

^{1 –} Mechanical Vapor Recompression. 2 – High temperature options cover multiple technologies including induction furnace, electric arc furnace, resistance furnace, plasma technology and green H₂ burners.

STAGED IMPLEMENTATION OF TECHNOLOGY

Will be needed to achieve net zero

Renewables Deployment

Solar PV, wind, batteries

Zero Emissions Haulage

Battery electric, $\ green\ H_2\ haul\ trucks$

Process Heat Electrification

Heat pumps, MVR, plasma torches, green H₂

Removals to Offset Residual Emissions

Direct air capture, carbon mineralization, land-use

Operational Energy Efficiency

Best-in-class motors, heat recovery, automation, digital twins

Process Intensification

Mine-to-mill optimization, high-intensity selective blasting, bulk ore sorting, coarse particle flotation

Example:

NET ZERO COPPER PRODUCTION

Technology interventions to achieve net zero for a large (>20 Mtpa ore processed) sulphide open pit, remote (off-grid) copper mine supplying concentrate a short distance (via road) to a grid connected smelter and refinery

Example:

NET ZERO CLASS 1 NICKEL PRODUCTION

Technology interventions to achieve net zero for a nickel laterite operation (~2 Mtpa feed) using high pressure acid leach to produce Class 1 nickel at a grid-connected mine site

SUSTAINABLE FINANCE

instruments can enable the technology deployment

Bonds

- 2022 YTD Issuance: \$503 billion
- · Green bonds: \$306 billion
- Sustainability bonds: \$84 billion
- · Social bonds: \$61 billion
- Sustainability-linked bonds: \$52 billion

Loans

- 2022 YTD: \$214 billion
- Green loans: \$27 billion
- Sustainability-linked loans: \$186 billion

Source: BNEF Sustainable finance database

SUSTAINABLE FINANCE PROVIDES INDEPENDENT VALIDATION

of a company's funded decarbonization activities; reduces perception of greenwashing

Instrument

Sustainable bonds and loans (use of proceeds)

Funding objective

Funding mature low-carbon technologies (e.g., RE, EE) where use of proceeds can be monitored

Examples

SQM and Livent
Corporation each raised
green bonds (\$700M and
\$225M) to finance
energy efficiency and
transport electrification
projects

Sustainability-linked bonds and loans (target-driven)

Funding general corporate sustainability action meeting sustainability performance targets tied to debt pricing

Anglo American secured a \$100M sustainabilitylinked loan from IFC; the first in the global mining sector to exclusively focus on social indicators

Sustainable concessional/ blended finance

Suitable for smaller companies in developing countries or innovative technologies on the cusp of being commercial

Climate Investor One provides early-stage project development, construction financing, and refinancing to renewable energy projects in developing countries (\$850M budget in 2019)

Listed green equity

Funding general corporate sustainability interventions by large listed mining companies with mature sustainability strategies

Armadale Capital, Harvest Minerals Ltd, Tirupati Graphite Plc, Goldplat are listed on the London Stock Exchange Green Economy Mark

Low-carbon technology interventions can deliver

ENVIRONMENTAL AND SOCIAL CO-BENEFITS

TO ACHIEVE NET ZERO

Hard to abate emissions need to be balanced using carbon removal offsets

2020 to ~2045

- Prioritize absolute GHG emissions reductions in line with a 1.5°C trajectory
- Support "beyond value chain mitigation" while minimizing own emissions to help societal decarbonization occur more quickly

Beyond ~2045

Neutralize residual, hard-to-abate emissions using high-quality carbon removal offsets

Balance the Net Zero equation
~10% residual emissions = carbon removal offsets

A JUST MINING TRANSITION ENABLES

communities to reimagine their future at the center of a new climate economy

The Just Energy Transition Framework for Company Action*

UNIVERSAL NET-ZERO
ENERGY
Supporting universal
access to energy and a
net-zero emissions world.

WORKFORCE EVOLUTION
Evolving the energy
workforce to support a
low and zero carbon
energy future

COMMUNITY RESILIENCE
Building community
resilience

COLLABORATION &
TRANSPARENCY
Fostering collaboration
and transparency
throughout the process

Principles for a just mining transition

- Sustainable future for all
- Fair and decent work
- Workers' rights and social dialogue
- Community led approach

- Social consensus and due participation
- Diversity and inclusion
- Collaboration and transparency

*Source: https://www.inclusivecapitalism.com/

The net zero mining transition can be a

PLATFORM FOR DELIVERING A JUST TRANSITION

CASE STUDIES

De Beers' Accelerating Women Owned Micro-Enterprises (AWOME)¹

Provides mentoring, network, business, and life skills training, which in turn, creates new jobs, regular wages and a wider range of businesses to help local communities to thrive.

Enel's Global Framework Agreement²

Enel agreed to a Global framework agreement with international unions and a just transition agreement with its Italian sector unions that includes apprenticeships to ensure knowledge transfer of competences from elderly to young workers; commitment to retention, retraining and redeployment, as opposed to retrenchment, particularly for workers at thermal plants; Early pension for older workers; and dedicated training for qualification and employability of workers

Anglo Americans' Sustainable Mining Plan, pillar two: Thriving Communities³

The "Thriving Communities" pillar aims to build thriving communities with better health, education and levels of employment.

They work with local governments, community leaders, and NGOs to contribute to community needs, from housing and infrastructure to healthcare, education and recreation.

RAPID DECARBONIZATION REQUIRES

a collaborative multi-stakeholder approach for ecosystem change aligned with best practice

ELLEN MACARTHUR FOUNDATION

LOW-CARBON TECHNOLOGY INITIATIVES

WIPO GREEN

THIRD 🔏

DERIVATIVE

CHARGE ON

HYDROGEN

Collaboration

WORLD

RESPONSIBLE & SUSTAINABLE MINING INITIATIVES

amira

THE B TEAM

MINE

CROSS-CUTTING COLLABORATIVE INITIATIVES

VOLUNTARY CARBON OFFSET STANDARDS

Gold Standard

COPPER INDUSTRY ASSOCIATIONS

NICKEL INDUSTRY ASSOCIATIONS

Processing

PARTNERSHIP APPROACHES:

Supports low-carbon technology deployment and RD&D

Supports sustainable mining practices and good **ESG** performance

Supports ambitious climate action and a just transition

Supports credible carbon offsetting

Supports copper and nickel value chain actors

ENGAGE POLICYMAKERS

to address legal and regulatory barriers to mining decarbonization

Policy & Regulatory Barriers in Nickel Mining & Smelting Countries

Key Takeaways	
Energy Policy	Weak access to power purchasing agreements and independent power producers
Mining Legal Framework	Limited or no incentives to encourage energy efficiency or renewable energy use; and counterincentives
Climate Change Policy	Weak nationally determined contributions and Net Zero commitments

7 STEPS TO GUIDE COMPANY'S ON THEIR NET ZERO PATHWAY

90% EMISSIONS REDUCTION TO ACHIEVE NET ZERO BY 2050 & BEYOND

ACKNOWLEDGEMENTS

We would like to thank the Roadmap's steering committee and technical working group members for their continuous review, input, and support, and the subject experts that were interviewed and assisted with conducting peer reviews. They include:

Steering Committee:

Jonathan Dunn, Anglo American Stan Pillay, Anglo American

Daniele La Porta (previously World Bank) Veronica Martinez, ICMM

Technical Working Group:

Fernando Lucchini, Alta Ley Ben Davies, Anglo American Kathryn Horlin, BHP

Sophie Lu. BHP

Marielle Canter Weikel. Center for Environmental

Leadership in Business Michele Brulhart, Copper Mark

Koen Langie, Engie

Fleming Voetmann, FLSmidth Andrea Vaccari, Freeport-McMoRan

Diego Arrigorriaga, Haldeman Mining Company

Veronica Nyhan Jones, IFC David Poulter, IFC

Jonathan Grant, Rio Tinto

Todd Malan, Talon Metals

Ariun Bhalla, IFC Ross Hamilton, IFC Krishna Matturi, IFC

John Drexhage, World Bank

Bernard Respaut, International Copper Association Louise Assem, International Copper Association

Veronica Martinez, ICMM Steven Potter, IFC

Aaron Cosbey, IISD

Michael Lewis, Komatsu

Brendan Marshall, Mining Association of Canada

Daniel Hill, Natural Resources Canada

Mark Mistry, Nickel Institute Nicola Steen, Redshaw Advisors Gerardo Alvear Flores. Rio Tinto

Rachael Davis, Rio Tinto Oxana Meggle, Société Générale

Steven Brown, Steven Brown Consulting

Antonina Scheer, Transition Pathway Initiative

Ferdinand Maubrey, Tesla Saleem Ali, University of Delaware

Vivian MacKnight, Vale

Jörgen Sandström, World Economic Forum

Subject Matter Experts:

Charles Akefu. ALSF

Alex Powel-Davies. Carbon Trust

Benjamin Curnier (previously Carbon Trust)

Gina Hall (previously Carbon Trust) Helen Andrews Tipper, Carbon Trust

Khodani Mulaudzi (previously Carbon Trust)

Pietro Rocco, Carbon Trust

Meredith Sumpter, Council for Inclusive Capitalism

Silvia Burgos Rodríguez, Enel Foundation

Luca Spinosa, Enel Foundation Amy Sexton, Freeport-McMoRan Tracy Bame, Freeport-McMoRan

Stephanie Bouackert, IEA Ignacio De Calonie. IFC Neil Pereira, IFC Yanilka Fernandez, IFC

Philippe Olivier, IFC Edward Cameron, IFC

Isabel Ramdoo, IGF Howard Mann, IISD Yunshu Li, IRENA

Nadim Kara, Natural Resources Canada

Nicola Woodroffe, NRGI Patrick Heller, NRGI Cecilia Perla, Rio Tinto Paul Kluge, Rio Tinto

Justine Morven Sylvester, World Bank

Wolfhart Pohl, World Bank Ann Moline, World Bank

Rikki Campbell Ogden, Pixie Design

We apologize if we have excluded an individual or institution that may have contributed towards the development of this document.

CONTACTS

NAMRATA THAPAR Global Mining Manager, IFC nthapar@ifc.org

VERONICA NYHAN JONESSustainable Infrastructure Advisory IFC vnyhanjones@ifc.org

ARJUN BHALLA
Senior Operations Officer, IFC
abhalla@ifc.org

LINKS

IFC Mining
IFC CommDev

